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D I G I T A L  MEASUREMENT OF DIFFERENTIAL TIME 

DELAY O F  PSEUDO RANDOM CODED SIGNAIS 

INTRODUCTION 

i n  t'ds study of zislunzr ~lnd i n t e rp l ane ta ry  e l e c t r o n  dens i ty  

by r ada r  techniques,  i t  is f requent ly  necessary t o  measure a group 

t i m e  de l ay  or the d i f f e r e n t i a l  of t i m e  delay on t w o  or m o r e  f r e -  

quencies. Though t h e s e  measurements have been made successfu l ly  

using s i m p l e  s inusoida l  modulation of a r a d i o  frequency carrier, 

i t  appears  t h a t  important improvements can b e  achieved by t h e  use  

of pseudorandom codes as the modulating waveform. These codes can 

be  e a s i l y  generated with l inear  feedback s h i f t  registers, and thus  

schemes employing them a r e  practical t o  implement. The w e l l  known 

autocorre la t ion  p rope r t i e s  of pseudorandom codes have a t t r a c t e d  

many i n v e s t i g a t o r s  and considerable  success  has a l ready been 

achieved using these  codes in space appl icat ions( ' ) .  Most appl i -  

c a t i o n s  have made use  of analog demodulators and s i g n a l  processing. 

I n  t h i s  paper w e  consider t h e  problem of measuring d i f f e r e n t i a l  i- 
t i m e  delay by t h e  use of binary cross c o r r e l a t i o n  of two rece ived  

s igna l s .  Such an operat ion can b e  implemented with r e l a t i v e  ease 

compared t o  analog co r re l a t ion ,  e spec ia l ly  i f  processing i s  to 

occur on a spacecraf t .  When both s i g n a l s  are very noisy, i t  

requ i r e s  approximately 2.46 as much t i m e  as analog processing;  

when one s i g n a l  i s  clean,  as would be  t h e  case i n  an abso lu te  

delay measurement, 2.02 as much t i m e  is needed. 
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W e  assume both s i g n a l s  a r e  corrupted by s t a t iona ry ,  w h i t e ,  

gawian noise ,  bandlimited to the  b i t  frequency of t h e  pseudo- 

random code, This is done for mathematical s impl i c i ty  based on 

digital sampling done once p e r  b i t .  I f  the no i se  bandwidth is 

l a r g e r ,  and hence independent samples can be made more frequent ly ,  

no change i n  any of the  r e s u l t s  w i l l  occur. 1 I 
/ I  . J *  

DISCUSSION 

W e  recall that a pseudorandom sequence is a sequence of zeros 

and ones with the following w e l l  known proper t ies :  (2) 

(1) It has l eng th  M = en - 1, where n is a p o s i t i v e  in t ege r .  

zeros and - M+l ones. M - 1  (2) I t  conta ins  - 2 2 

( 3 )  It, toge ther  with i t s  c y c l i c  permutations and the all-zero 

sequence of length M, forms a group code under t h e  

opera t ion  of componentwise modulo t w o  addi t ion .  

W e  w i l l  denote such a sequence as S(O) where 

do) = (sl, s2, ... s ) M 

and shal l  denote t h e  ith c y c l i c  permutation as 

where i t  is understood that a l l  subsc r ip t s  are taken modulo M, 

such that ,  for example 

k = i n t e g e r  . 
j ’  

- s  j+m S (3) 

2 



. 

C 

W e  note that each element of t h i s  group code is its own inverse .  

The group property can be used to de r ive  t h e  au tocorre la t ion  

of t h e  pseudorandom sequence. 

The sumof S (O) and S (k) has a one i n  every p l ace  i n  which 

S(O) 

(O) has - ones and 2 and S(k) agree.  W e  know tha t  S 

M-1 
2 

between S (O) 

(0) and S (k)  d i sag ree  and a zero i n  every place i n  which S 

zeros, Thus there is one more disagreement than  agreement - 
and S(k) ;  i.e., 

R(k) - - - l k f O  ( 5 4  - M  

M where 

M R ( k )  = 

iA 

I t  is also clear t h a t  

R ( 0 )  = 1. 
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Thus t h e  sequence has au tocorre la t ion  a s  shown below: 

f R(k) 

-J I. 
M 

Fig. 1: AUTCCORREIATION OF PSEUDORANDOM SEQUENCE 

W e  w i l l  assume t h a t  w e  have demodulated information re- 

ceived on two  d i f f e r e n t  c a r r i e r  f requencies  and thus must 

process  two  s igna l s :  

r2(t) = A2 x ( t  + pT) + n2( t )  

H e r e  x ( t )  is  a waveform switching between l e v e l s  fl i n  

such a way t h a t  

x ( t )  = (-1)"i + i T  - < t - < (i + 1)" 

i.e.,  is  a pseudorandom waveform with b i t  t i m e  T. 
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W e  also assume t h a t  (3 is an i n t e g e r  with 0 < @ < M. The - 
noises  n l ( t )  and n2(t)  a r e  independent, s t a t i o n a r y ,  zero-mean, 

gaussian, white, and are bandlimited to  

s p e c t r a l  d e n s i t i e s  of - 
( - - with power 2T’ E) 

, respec t ive ly .  Hence t h e i r  and - N2 N1 
2 2 

au t  ocorrel at i ons 

where 

s i n c  x 

are given by i 3) 

r s inc  - - 2T T 
N1 - -  

T s inc  - N2 _ -  - 2T T 

s i n  nx 
Ioc 

- - 

Our ob jec t  is  t o  obtain a r e l i a b l e  e s t ima te  of (3. This w i l l  

i n d i c a t e  d i f f e r e n t i a l  group ve loc i ty  of electromagnet ic  waves a t  

t h e  t w o  carrier frequencies .  Our estimate w i l l  be  obtained with 

t h e  system shown i n  Fig.  2. The s i g n a l s  rl(t) and r,(t) are 

hard l imi t ed ,  y i e ld ing  t h e i r  p a r i t i e s .  Upon d i g i t a l  delay of 

sgn fr2(t)]  

are compared once pe r  b i t ,  

and l o g i c a l  processing i n  which t h e  t w o  s i g n a l s  

i s  obtained where w e  see that  
n 
R(k) - r  s g n  [rl(to + j T )  r2(to + j T  - kT)] 

A 
R(k) - 

j =1 

where processing starts a t  t i m e  to and ends a t  t i m e  to + MNT. 

W e  w i i i  d e f ine  the estimated ~ i g i t d  ai.itocorre1ation of 

and r2(t) i n  a na tu ra l  manner as 

rl( t )  

(9) 
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A 1 A  
RN(k) = E R(k) . 

A 
W e  should expect $(k) t o  have a maximum at  k = @. Thus i f  

$(k) is  a cons i s t en t  estimator, i.e., an estimate whose var iance 

can be made a r b i t r a r i l y  small as the t i m e  f o r  es t imat ion  is  

increased, w e  can determine @ if w e  t a k e  N s u f f i c i e n t l y  l a r g e  

and vary k. 

Let  us  def ine  

p1 = probab i l i t y  t h a t  n l ( t )  > /All  a t  a f ixed  t i m e  t '  (1W 

= p r o b a b i l i t y  t h a t  ng( t )  > ( A 2 1  a t  a f i x e d  t i m e  t '  . (1 lb)  p2 

We note  t h a t  p1 is jus t  t h e  p robab i l i t y  t h a t  t he  p a r i t y  of r l( t ' )  

is j u s t  t h e  p robab i l i t y  tha t  t h e  p a r i t y  is changed by noise;  

of r ( t ' )  is  changed by noise .  W e  now can e a s i l y  c a l c u l a t e  t h e  

statistics of our  estimate,  s i n c e  w e  are sampling a t  t i m e s  sepa- 

p2 

2 

r a t e d  by i n t e g r a l  mul t ip les  of T, a t  which t h e  no i se  autocorre- 

l a t i o n s  have zeros. Thus w e  only need u s e  t h e  s t a t i o n a r y  no i se  

p robab i l i t y  dens i ty  funct ions.  From eq. (10) w e  write 

When x ( t  +jT)  and x ( t  +jT-kT) have t h e  same p a r i t y ,  t he  

expected value of a sample is 

0 0 
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When x( to+ jT)  and x ( t  +jT-kT) have opposi te  pa r i ty ,  i t  is  
0 

Pr(samp1e ;= 1) - Pr(samp1e = -1)~- (1-2p1)(1-2p2)sgn(A1A2) ( l 3 b )  

Hence, from t h e  au tocorre la t ion  of t h e  sequence, w e  have 

and f o r  k # f3 

A 
Thus t h e  expected value of RN(k) is  merely t h e  au tocor re l a t ion  

of the  sequence sca led  by t h e  f a c t o r  (1-2pl)(l-2p2) sgn(A1A2). 

S ince  samples taken a r e  independent, w e  have 

MN 
A 1 2  

v d R N ( k ) ]  = (E) 1 var {sgn[rl( to+jT) r2( to+jT-kT)] 

j =1 

- - 1 [l - (1-2p1) 2 (1-2p2) 2 1 
- M N  

for any value of k. Hence our  estimate is cons i s t en t .  

W e  wish t o  compare the  processing t i m e  required t o  that 

of an analog estimate using a matched f i l t e r  i n  which the  

quant i ty  of i n t e r e s t  is  

SN(k) = - s- rl(t) r2(t-kT) d t  . A 

ImT 0 

(15) 
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Such comparisons w i l l  be made f o r  f ixed  r a t i o s  of mean to  standard 

deviat ion.  I f  w e  de f ine  

w e  f i n d  tha t :  

1) I f  both s i g n a l s  have l o w  signal-to-noise ratios, i.e., if 

‘d 1 
=2.46 and A << N2 , then (r) N1 

a 2 A12 << - 2T 

2) I f  one signal-to-noise ra t io  is l o w  and t h e r e  is no 

no i se  on t h e  o ther  channel, then 

Kd 2 
(r) a 

These r e s u l t s  are derived i n  the appendix. W e  n o t e  that  

i s  t h e  ra t io  of analog t i m e  to d i g i t a l  t i m e ,  s i n c e  means are 

t i m e  independent and variances are inverse ly  proport ional  t o  

processing t i m e .  

as much processing t i m e  is requi red  f o r  our  scheme. This  must 

be balanced aga ins t  r e l a t i v e  s impl i c i ty  of implementation. I f  

one channel is clean,  almost exac t ly  twice as much t i m e  is 

requi red  t o  go d i g i t a l .  For deep space probes where l ightweight  

instrumentat ion is  of grea t  importance, t h e  scheme c l e a r l y  can be 

usefu l  s i n c e  increased processing t i m e  requi red  w i l l  be  unimpor- 

Thus if both channels are noisy, 2.46 t i m e s  

t a n t  i n  many p r a c t i c a l  s i t ua t ions .  
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APPENDIX 

RATIO OF A N A W  To DIGITAL PROCESSING TIMES 

I. lsaro Noisy Channels 

I n  t h i s  case w e  have 

and 2 N1 where 6 - - 
1 -2T 

A1 

61 
- 

Hence, 2 N2 
62 = E  

( A - l a )  

(A-lb) 

f o r  low signal-to-noise 

Now consider  t h e  analog 

ratios, s i n c e  then p1 3 p2 25 1/2 . 
estimate. 

P MNT 

Interchanging expectation and i n t e g r a t i o n  which i s  va l id  f o r  

bandlimited noise  and f i n i t e  i n t e g r a t i o n  t i m e ,  
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+ A2 2 < x(t)x(s) > Rl(t-s) + Rl(t-s) R2(t-s)] dtds (A-5) 

Here brackets denote time averages, and terms with zero expectation 

have been dropped. Now, for i = 1, 2, 

significant only for lt-91 < T. In this region we can write 

< x(t)x(s) > Rift-s) is 

- 
2 < x(t)x(s) > Ri(t-s) = bi [1 - t-s (7) M+l sinc - t-s 1 . T 

We also assume that MNT is large enough such that 

J Ri(t-s) R2(t-s) dt Rl(t-s) R2(t-s) dt 
0 '00 

(A-6) 

(A-7 1 

for essentially a l l  values of s under consideration. In this case 

using the fact that (4). . 
1 

-1 
J sinc x cix = 1.18 (A-9) 
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Thus 

I -  
~ 

: 
I 

Kd 1 
(r) = 2.46 a 

I I .  One Noisy Channel and One N o i s e l e s s  C h a n n e l  

N1 
A12<< E ,  N 2 = O .  

Now w e  have 

(1 - 2p2) = 1 

H e n c e  

A g a i n  

For the  analog estimate 

EISN(B) l  = A1A2 as before . 

(A-10)  

( A- 11 a) 

( A - l l b )  

(A-12)  

(A-13)  

(A-14)  

- - 0.775 A2 61 using eqn. (A-6) (A-15 1 

H e n c e  

Kd 1 k)  =2.02 a 
(A-16) 

12 



.. 

REFERENCES 

(1 )  Golnmb. S .  W,, L. D Baumert, M. F. Eas t e r l i ng ,  J. J .  S t i f f l e r ,  
and A .  J. Vi te rb i ,  D ig i t a l  Communications with Space 
Applicat ions,  Prentice-Hall ,  Inc. ,  Englearood C l i f f s ,  N. J., 
1964. 

(2) Ibid. ,  pp. 7-12. 

( 3 )  Davenport, W. B., Jr. and W. L. R o o t ,  An In t roduct ion  to t h e  
Theory of Random Signals  and Noise, M c G r a w - H i l l  Book CO., 
New York, N. Y., 1 9 9 .  

(4) Jahnke, E. and F. Emde, Tables of Functions,  Dover Publ icat ions,  
New York, N. Y. ,  1945. 

I -  
, '  


